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SUMMARY 

The numerical solution of the compressible Euler and Navier-Stokes equations in primitive variables form 
requires the use of artificial viscosity or upwinding. Methods that are first-order-accurate are too dissipative 
and reduce the effective Reynolds number substantially unless a very fine grid is used. A first-order finite 
element method for the solution of the Euler and Navier-Stokes equations can be constructed by adding 
Laplacians of the primitive variables to the governing equations. Second-order schemes may require 
a fourth-order dissipation and higher-order elements. A finite element approach is proposed in which the 
fourth-order dissipation is recast as the difference of two Laplacian operators, allowing the use of bilinear 
elements. The Laplacians of the primitive variables of the first-order scheme are thus balanced by additional 
terms obtained from the governing equations themselves, tensor identities or other forms of nodal averaging. 
To demonstrate formally the accuracy of this scheme, an exact solution is introduced which satisfies the 
continuity equation identically and the momentum equations through forcing functions. The solutions of 
several transonic and supersonic inviscid and laminar viscous test cases are also presented and compared to 
other available numerical data. 
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1. INTRODUCTION 

For inviscid flows, schemes for the numerical solution of the Euler equations in primitive 
variables form require the use of artificial viscosity or of upwinding to eliminate odd-even 
decoupling and for numerical stability. On the other hand, for the Navier-Stokes equations at 
high Reynolds numbers, the viscous terms are dominant only in a thin layer outside which the 
flow is nearly inviscid. The artificial viscosity that is needed for numerical stability in this outer 
region must be minimized throughout, or eliminated altogether in the viscous layer, in order not 
to contaminate the numerical solution with artificial dissipation. 

In first-order methods, the amount of artificial viscosity necessary for stable solutions is 
proportional to the mesh size and its detrimental effects are reduced by mesh refinement. It is, 
however, impractical to use a fine mesh throughout the solution domain, and a cost-effective grid 
should reflect the disparate characteristic lengths of the viscous and inviscid regions. A practical 
alternative to fine meshes would be to adopt a higher-order artificial viscosity. 
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A continuous effort has been devoted to achieve such minimum artificial viscosity. For finite 
difference and finite volume this is accomplished either by using a combination of second- and 
fourth-order dissipation 1 ,2  or by using higher-order ~ p w i n d i n g . ~ , ~  For finite elements, Hughes 
et al.596 developed the Petrov-Galerkin and streamline upwinding approaches, and Morgan et 
al.' adopted a flux-corrected transport strategy to reduce the effects of the artificial viscosity and 
improve the quality of the solution. 

Baruzzi et ~ 1 . ~ ~ ~  have proposed a simple first-order artificial viscosity in the form of Laplacians 
of the pressure and velocity components, added to the continuity and momentum equations, 
respectively. To extend this approach to higher order, however, a fourth-order operator would be 
required, calling for high-order elements. To avoid this, an alternative would be to recast the 
fourth-order artificial viscosity as the difference of two second-order operators. Thus, it is 
proposed in this paper to balance the Laplacians of the first-order scheme with correction terms, 
effectively yielding a fourth-order dissipation. Such a scheme has been tested in the context of 
viscous incompressible flows," transonic inviscid flows' and transonic viscous flows. 12* l 3  The 
present paper formalizes this second-order approach for inviscid and viscous transonic flows in 
a finite element framework. 

2. A FIRST-ORDER ARTIFICIAL VISCOSITY SCHEME 

The governing equations of viscous, steady compressible flow can be written as 

V . ( p V ) = O  

V * ( p V V )  + v p  - V . 7  = 0 

T ,  + 110"k :=( T +  llO'k)(';yli 

1 
Re 

V . 7  = - [ - $V(pV.V)  + V x p ( V  X V )  + 2(V*pV)V]  

Equation (lc) is the definition of constant total enthalpy, a good approximation for steady flow 
without heat transfer. Equation (Id) is Sutherland's law for air. After replacing the density in 
equations (la) and (1 b) by (lc), and lagging the viscosity coefficient during the iterative solution, 
the system, in two dimensions, reduces to three coupled equations with variables {u, u, p } .  

A pressure dissipation term is introduced in the continuity equation to permit the use of equal 
order interpolation polynomials for pressure and velocity: 

(24  
To stabilize the numerical solution of the equations an artificial dissipation (viscosity), propor- 
tional to the Laplacian of the velocity, can be introduced in the momentum equation as follows: 

(2b) 

V . ( p V )  - E1V2P = 0 

V . ( p V V )  + v p  - v.7 - E1V2V = 0 

This first-order artificial viscosity scheme successfully met the Pulliam challenge l 4  for inviscid 
non-lifting flows over circular cylinders and ellipses, a set of simple test cases whose accurate 
numerical solutions, to our knowledge, have yet to be obtained by other methods. The same 
approach has also been extended to viscous fl0ws.'~9 l 6  
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Even though good results have been obtained based on equations (2), the penalty is that 
conservation of mass and momentum can only be achieved within an error proportional to the 
artificial dissipation terms. These effects must therefore be minimized. 

3. A SECOND-ORDER ARTIFICIAL VISCOSITY SCHEME 

The present work addresses the reduction of the artificial dissipation in order to improve the 
quality of the overall solution to second-order accuracy. Global second-order accuracy can be 
achieved by introducing fourth-order operators in place of the Laplacians in equation (2). 
Normally, these operators would require higher-order elements for a correct discretization; 
however, at the discrete level they can also be recast as the difference of two Laplacian operators, 
which require only linear elements. It is thus proposed to balance the Laplacian of pressure by the 
scalar quality V - F and the Laplacians of velocity by the vector V . G, where G is a tensor, as 
follows: 

V . ( p V )  - EiV.(Vp - F) = 0 

V * ( p V V )  + Vp - V . 2  - E1V'(VV - G )  = 0 
(34  

(3b) 
It is proposed to construct the terms F and G such that, at the discrete level, the differences 
between the Laplacians and the balancing terms yield a fourth-order artificial dissipation. 
Furthermore, the artificial viscosity terms must incorporate a function that removes the balanc- 
ing terms in the neighbourhood of a shock, allowing the solution to become locally first-order 
accurate to avoid spurious oscillations. For these reasons, equations (3a) and (3b) are modified as 
follows: 

V * ( p V )  - V .  [(ti + E ~ ) V P  - E ~ F ]  = 0 

V . ( p V V )  + Vp - V . 2  - V . [ ( E ~  + E ~ ) V V  - E ~ G ]  = 0 
(44  

(4b) 
The coefficients E~ and E~ denote the first- and second-order artificial viscosity coefficients, which 
are functions of the solution, such that E~ tends to zero in the neighbourhood of a shock and 
c1 tends to zero away from a shock. 

With the weak-Galerkin weighted residual method one obtains the following 

continuity 

jlA K {CPU - (E l  + E A P x  + E l f 1  1, + [ P O  - (61 + E2)PY + E Z f L l y )  d.4 = 0 

weak form 

!IA { [ p u  - (El + E2)Px + E2.1-11 wix + c ~ U  - ( E l  + E2)Py + E2f21 wiy)dA 

= $s Wi[pV-n - ( E ~  + eZ)pn + c2F-n]dS 

x-momentum 
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weak ,form 
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= fs Wipdy + $s Wi[puV.n - (cl + E ~ ) U ,  + ~ ~ G - n l d S  

dxl dS 
dY P 

- fs Wi [& (2uX - u,) - - -(u, + u,)- dS dS Re 

y-momentum 

weak form 

= fs Wipdx + fs Wi[puV-n - ( E ~  + cZ)u,  + c2G-n]dS 

dS dxl dY 2P Wi - ( ~ , + U , ) - - - - ( ~ U ~ - U , ) -  dS 
Re - dS 3Re 

with Wi denoting the weight functions. At the discrete level f i ,  f2,gl l ,  g l2 ,  gZ1,  gZ2 are nodal 
variables and would be represented in the finite element framework as 

4 

{F, G, = 1 {Fk, Gk) Nk 
k =  1 

where {Fk, Gk} are the nodal values of {F, G }  and N k  are the finite element shape functions. Let 

$ = d 2 ) c  max Tj" , 4 = max(0, d4)& - $) 
( k  ) 

where 
k k 1 m y  p j  + min p j  - 2 p j  

max pj" + min pj" - 2pj 
k Tk = 

k k 

The notation ( .)f refers to all the neighbours k of node j .  
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The artificial viscosity coefficients are similar to those of References 1 and 2. The functions 
and E~ are 

where c is the speed of sound. The artificial viscosity is controlled by the parameter E and the 
values of the coefficients d2) and d4) are similar to those of References 1 and 2, namely idz) = 4 
and d4) = 0-009. 

After replacing the density by equation (lc), the equation system (5) is linearized by Newton’s 
method, discretized with bilinear quadrilateral isoparametric elements and integrated by 
Gauss-Legendre quadrature with (3 x 3) Gauss points. At each iteration, a fully coupled, sparse 
linear algebraic system of the form 

E l  = ( I V l  + c)-1cI, E2 = ( IV l  + 4 . 4  

[J]{AU} = cc{Res} (6) 
is solved by a direct solver. Here AU = {Au, Au, Ap}, {Res} is the residual and a is a relaxation 
factor. In this deferred correction approach for the introduction of the second-order artificial 
viscosity, the added balancing termsfl, f2, g l l ,  g I 2 ,  g21, gZ2 are functions of the solution at  the 
previous iteration; hence the Jacobian matrix [ J ]  is unaltered with respect to the corresponding 
first-order approach. The residual, however, is of higher-order accuracy. 

4. BOUNDARY CONDITIONS 

The following boundary conditions are imposed, with all contour integrals of equations (5) 
evaluated, unless otherwise noted: 

Inflow: u, u, p are specified. 
Walls: For viscous flows u, u = 0. For inviscid flows, the term p V - n  in the continuity 

Outjlow: For a subsonic outflow, p is specified in the contour integrals of the momentum 

For all other boundary conditions the practice has been to replace the governing equations by 
extrapolation formulae, locally unidimensional equations or Riemann invariants. However, since 
the finite element shape functions are smooth continuous polynomials over the element, this 
situation can be avoided altogether. Hence, once the influence matrices of the elements on the 
boundary are assembled into a global one, no further treatment is required for quantities such as 
pressure, velocities, etc. The advantage is therefore that the discrete governing equations are not 
replaced by simpler approximations at the boundary. 

equation contour integral vanishes. 

equations. For a supersonic outflow, no back pressure is specified. 

5. ARTIFICIAL VISCOSITY BALANCING TERMS 

The balancing terms F and G can be obtained either from tensor identities and nodal averaging, 
as shown in the first proposed scheme outlined below, or simply through the smoothing 
provided by nodal averaging, as in the second proposed scheme. The balancing terms are 
functions of the solution at the previous iteration and cannot be linearized due to the intermediate 
procedure required for their evaluation. 

5.1. Scheme 1 

The term F of equation (3a) is obtained from the original momentum equations 

F =fii  +f2j = Vp = - V.(pVV) + V a t  ( 7 4  
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1,i 2P pu2 - __ (2u. - u,) f - - 
"- {[ 3Re 

IY) 2P 
f 2  = - puu - - (24, + u,) + PO2 - ~ (20, - u,) {[ Re I. [ 3Re 

The artificial term of equation (3a), V2p - V - F, does not vanish identically, even in the steady 
state when the discrete momentum equations are satisfied, since the divergence of the momentum 
equations is not necessarily zero in a discrete sense. Nevertheless, conservation of mass is 
improved by at least an order of magnitude over the original method represented by (2a). 

Similarly, the momentum equations are modified by adding artificial viscosity terms propor- 
tional to the Laplacian of the velocity components, with these terms balanced by a tensor 
obtained from the following identity: 

v2v - V ( V . V )  + v x (V x V )  = 0 

v2v - vs + v x w  = 0 

The tensor G therefore becomes 

911 =s, 912 = -0, 9 2 1  = w, 9 2 2  = s  

The correction termsf,, f2 ,g l l ,  912, gZl,  gZ2 are evaluated at the nodes in accordance with the 
standard weak-Galerkin framework. For fl , for example, the Galerkin integral is 

Let 

where Nj represents the finite element shape functions andf,j  denotes the value of fl at the four 
nodes of an element. Upon integration by parts, 

where [ M I  is the mass matrix and the integral on the right-hand side is a function of the solution 
at the previous iteration. 
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The other variables can be written as 

1.1 2P 
f2 = - puv - - (u, + v,) + pv2 - ~ (2u, - u,) i[ Re lx [ 3Re 

911= - - V . V ,  9 1 2 = V X V ,  921 = - v x v ,  g 2 2 =  -v .v  
where 9 2 2  = 911,921 = - 912 and 

j j A  Wi(gl l  + V.V)dA = 0 j j A  Wi ( g - V x V) d A = 0 

In summary, for this scheme, four new variables, fi , f 2 ,  g1 1 ,  g12,  need to be defined at the nodes as 
functions of the variables {u, u, p }  at the previous iteration. 

5.2. Scheme 2 

In this proposed scheme, the Laplacians of the artificial viscosity can be balanced in a slightly 
different manner: 

V.(pV) - &1[v2p - v * ( v p ) ]  = 0 

V.(pVV) + v p  - v.7 - &1[V2V - V.(VU)] = 0 

The vector Vfl and the Cartesian tensor VU are constructed as follows: 

V@ =fii +fzj  = p x i  + p,j 

VU = U, + U, = (911 + g21)i + (912 + g22)j = (u, + v,)i + (u, + VJj 

g12,  gzl  , g22 are evaluated within the weak-Galerkin framework, outlined in (9) wheref,, f2, g1  
and (lo), such that 

jIA Wi(f1 - p x ) d ~  = 0, jjA Wi(g11- u x ) d ~  = 0, jjA ~ i ( g 2 1 -  u x ) d ~  = 0 

JjA ~ i ( f 2  - P y ) d ~  = 0, [IA Wi(gl2 - u y ) d ~  = 0, jjA ~ i ( g 2 2  - 0 y ) d ~  = 0 

This is a more general scheme allowing a balanced artifical viscosity for the fully energy equation, 
should it be included. In this approach, the number of extra variables to be computed increases 
from four to six. However, one should note that the mass matrix in both schemes is identical for 
all the additional variables and needs to be assembled and decomposed only once, in a post- 
processing step, during each Newton iteration. Therefore, the increase in the number of variables 
of Scheme 2 represents a minor penalty in terms of computational cost. 

Four different methods can be used to compute the nodal values of the additional variables: the 
mass matrix of equation (10) (CMM), the lumped mass matrix (LMM) and, as an alternative to 
the Galerkin averaging, extrapolation from the Gauss points to the nodes (EXT) through 
a 9th-order p~lynomia l ’~  and, finally, least-squares fitting (LSQ) involving sampling the derivat- 
ives of the variables at all the Gauss points of the elements surrounding each node.’* 

Note that the solutions obtained with the second-order schemes are less sensitive to the value 
of the artificial viscosity coefficient than those obtained with the first order one. The convergence 
rate of the second-order schemes, however, is directly controlled by the value of the arti6cial 
viscosity coefficient since the balancing terms are lagged from the previous iteration and do not 
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contribute to the Jacobian of the Newton linearization. A partial remedy to this situation is 
presented in the following section. 

6. SEMI-IMPLICIT SECOND-ORDER BALANCING TERMS 

The various schemes presented above for the construction of the second-order balancing terms 
have one common feature: the balancing terms are obtained from an averaging procedure. 
Indeed, some of the schemes are based on a sophisticated but expensive weighted-averaging 
procedure, the Galerkin integral. The complexity of this procedure requires both the solution of 
a matrix and that the balancing terms be lagged at the previous iteration, with a detrimental effect 
on both the convergence rate and the solution time. Since the solution of (6), the linear system of 
coupled equations of the Navier-Stokes FEM scheme, can be an expensive undertaking when 
a direct solver is used, a fully implicit scheme with quadratic convergence would be desirable to 
minimize solution cost. A fully implicit second-order scheme, however, requires a wider finite 
element stencil and would produce a system of equations with twice the current bandwidth, for 
which direct solvers would prove expensive and unwieldy. Hence, a compromise must be sought. 

The Galerkin weighted averaging can be replaced by a simpler averaging procedure which 
requires neither integration nor the solution of an intermediate system of equations. This scheme 
will be outlined through the construction of the balancing term fl ,  with the procedure being 
identical for the other five balancing terms introduced in Scheme 2. 

6.1. Scheme 3 

The definition offi is 

fl = P x  

Introducing the finite element discretization for the derivative yields the following equation: 

wheref, is intended to be a nodal value but p x  is defined only inside the element in the discrete 
approximation. The nodal value of fi is obtained by an area averaging of the values of the 
derivatives computed at the centroids of the elements surrounding each node, such that 

where pj is the value of pressure at the nodes of the element and 

M 

Atotal = c 4 
I = 1  

is the sum of the areas of the element surrounding each node, M is the number of elements 
surrounding a node and the subscript c indicates the centroid of the element. 

The expression for fi in equation (12) is substituted directly into equations (5a) and is 
eventually discretized like a nodal-based quantity by the finite element method. The areas of the 
elements and the derivatives of the shape functions are constants for stationary grids, hence since 
the balancing terms can be recast in terms of the dependent variables, the intermediate averaging 
procedure is eliminated and the balancing terms can be linearized with Newton’s method. 
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Since a full linearization would double the bandwidth, compared to the schemes where the 
balancing terms are lagged, a partial linearization is suggested. The balancing terms contributions 
to the right-hand side of equation (6) must be included in their entirety. Some elements have 
balancing terms stiffness matrices which can only be partially assembled into the Jacobian matrix 
without expanding the bandwidth. It was found that if these stiffness matrices were partially 
assembled, the Jacobian matrix would lose its topological symmetry and the iterative procedure 
would diverge. Therefore, only the balancing terms stiffness matrices which can be fully assembled 
should be included into the Jacobian matrix to ensure stability. This is possible because the 
unknowns in equation (6) are the changes in the solution and the Jacobian matrix is a precondi- 
tioner for the system of equations. This procedure is stable, conserves the topological symmetry 
and, by including more information into the Jacobian matrix, produces better convergence rates. 

7. SOME PARALLELIZATION STRATEGIES 

The finite element discretization shown above leads to large sparse linear systems of equations 
which are not well conditioned. Two solution strategies are available: direct and iterative solvers. 
An efficient direct solver has been developed for the current two-dimensional applications for 
which speed rather than memory reduction is the main requirement. For three-dimensional 
problems, the memory requirements of direct solvers being prohibitive, one must resort to 
conjugate gradient-like iterative solvers.' 

The Gauss elimination algorithm is divided into two processes: the matrix factorization and the 
back-substitution, with the former being the most expensive and the one that benefits most from 
parallelization. 

The matrix is stored with a constant bandwidth and its indices are reversed so that it resides in 
memory with all rows arranged in sequential order, in the same way in which it is accessed during 
row elimination. The factorization step, being the most time consuming, receives particular 
attention: I F  statements are eliminated by storing selected critical parameters into three integer 
vectors of length N ,  the number of unknowns. The first vector maps the number of rows 
scheduled for decomposition below each diagonal entry, the second maps the address of the end 
of each row and the third is used during the back-substitution to map the number of the 
unknowns already solved that affect the calculation of the current unknown. The three vectors are 
assembled before the global iterative process and need not be evaluated repeatedly if the matrix 
size remains constant. 

The factorization step is represented schematically by three nested loops: the first loop sweeps 
all the entries along the diagonal of the matrix, the middle loop sweeps all the entries in each 
column under the diagonal and finally the inner loop handles the factorization of all the entries in 
the rows. Either of the inner or middle loops can be parallelized, with the parallelization of the 
middle loop generating less synchronization overhead and hence more performance gains. An 
efficient factorization is constructed so that each processor handles the multiplication and 
addition of a complete row. If the bandwidth is kept constant, a strict synchronization of the 
processors is no longer necessary as all handle an equal amount of work, with little idle time at the 
completion of the row operation spent waiting for the other processors to complete their task. An 
additional gain can be obtained by unrolling the inner row factorization loop. In this case, the 
processors memory caches handle the 1/0 of data in a more efficient manner, reducing the 
overhead required for fetching and storing data by increasing the size of the data blocks 
processed. Furthermore, on vector architectures the inner loop could also be vectorized. 

The solver is written in FORTRAN, contains no machine-dependent instructions and parallel- 
izes automatically on Silicon Graphics parallel workstations with the Power FORTRAN Accel- 
erator software. Figure 1 shows the performance gains obtainable with this solver on an SGI 
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Figure 1. Performance of the direct solver on an 8-processor SGI Power Series 280 GTX with 25 MHz MIPS R3000 
processors 

Power Series 280 GTX shared memory computer with eight 25 MHz MIPS R3000 processors. 
The problem considered is transonic flow over a NACA 0012 airfoil at M ,  = 0.8 and 1.25" 
angle of attack, discretized using a 254 x 30 C-grid. The matrix size is (23 637 x 371) and the 
solution requires 98 s with eight processors. Figure 2 shows the performance of the same solver on 
a Silicon Graphics Challenge workstation equipped with twenty 50 MHz R4400 processors. The 
problem considered as M ,  = 2 supersonic flow in a channel with a 4 per cent circular arc airfoil 
using a (80 x 200) grid. The matrix size is (47 920 x 1209) and the solution requires 295 s with 20 
processors. 

During the Newton iteration two processes dominate execution time: assembly and factoriz- 
ation of the global matrix. With the factorization parallelized as shown above, the assembly 
becomes the dominant process and it too should be parallelized in the interest of overall 
execution performance. The global matrix is the sum of all element matrices and is normally 
assembled in an element-by-element sequence. The process can be easily parallelized provided 
that the stiffness m a k e s  of neighbouring elements are not assembled and stored in the global 
matrix simultaneously, to avoid summation conflicts. A simple scheme consists in dividing the 
solution domain into n blocks of roughly equal size and assigning the assembly of each block of 
elements to a processor. This strategy involves a minimum of synchronization overhead. For 
complicated geometries some checking of the element assembly sequence on the interfaces of the 
blocks is required to eliminate potential conflicts. More complicated schemes based on checker- 
boarding or colouring the elements can also be applied, if necessary. The process of parallelizing 
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Figure 2. Performance of the direct solver on an 20-processor SGI Challenge equipped with 50 MHz MIPS R4400 
processors 

the assembly is inherently simple; however, the performance gain is not as dramatic as that of the 
matrix solver since the loop lengths in the stiffness matrices assembly are short. 

8. RESULTS 

A test case with an exact solution is proposed to verify the accuracy of the three second-order 
schemes. The Navier-Stokes equations are solved on a square domain, with a uniform mesh 
spacing, satisfying the following exact solution: 

p = 2 sin(x) sin(y), u = sin(x) cos(y), 2, = - cos(x) sin(y) 0.5 < x < 0.7, 0.5 < y < 0.7 

The original continuity equation, equation (l), is satisfied identically and a forcing function for 
each of the momentum equations can be derived from the exact solution. Five progressively 
refined grids have been used: (16 x 16), (24 x 24), (32 x 32), (48 x 48) and (64 x 64) elements. The 
Reynolds number is set at 1000. An error norm defined as 

~ r r o r  = ljA I U E x a c t  - UNurnerical I d~ 

is calculated for density, velocities and pressure. In Figure 3 the p, u, u, p )  errors of Scheme 1, for 
both the lumped and consistent matrices, do not tend to zero as the mesh is refined, suggesting 
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that only Schemes 2 and 3 are second-order accurate irrespective of the method used to compute 
the balancing terms. 

The second test case is for supersonic inviscid flow over a 15" wedge, at  M ,  = 2. The solution 
procedure is started with the first-order scheme and uniform artificial viscosity coefficients. The 
artificial viscosity parameters are initially set to is 
lowered to 0.01 and 0.005 at the intermediate RMS residual value of The first grid adapting 
is performed and the code is switched to second-order accuracy with the balancing terms of 
Scheme 3 and artificial viscosity parameter E = 0.2. After the intermediate residual is reached 
a second adaptation is carried out and the solution is finally allowed to converge to the final 
residual of lo-' with E = 0.1. The relaxation factor in (6) is set to a = 0.5 to stabilize the 
second-order solution in the presence of strong normal and oblique shocks. The (120 x 48) grid 
was initiallf nearly uniform in the streamwise direction and during the solution procedure it was 
adapted using a mesh adapting strategy based on a spring analogy.20 The initial, intermediate 
and final grids are shown in Figure 4. The Mach number contours obtained from the three grids 
are shown in Figure 5. The final grid was obtained by specifying minimum and maximum mesh 
spacings of 3.5 and 150 per cent of the average mesh size along each grid line, respectively. 

= 005, e2 = 0 uniformly throughout and 

Figure 4. Supersonic flow over a 15" wedge: initial, intermediate and final adapted grid 
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Figure 5. Supersonic flow over a 15" wedge: initial, intermediate and final Mach number contours (Mmin = 0.65, 
AM = 0.05) 

Figure 6 is the convergence curve which shows the effects of the five cycles of artificial viscosity 
and mesh refinement. Solution times are of the order of 30s per iteration for Scheme 3 on 
a Silicon Graphics Challenge computer, with four 150 MHz R-4400 processors. 

The third test is the AGARDOl case,21 namely that of transonic inviscid flow over 
a NACAOO12 airfoil, at M ,  = 0 8  and 1.25" angle of attack. A (200 x 32) 0-grid is used, with 200 
elements on the airfoil surface (Figure 7). For this test case, the solution is started with the 
second-order dissipation but with the viscosity coefficient set to a large value in order to stabilize 
the Newton method. This high value is then unloaded in 4 successive steps, E = 0.25, 0.15, 0.10 
and 0.05, converging at each value to an intermediate residual of 5 x with the last step 
carried to 10- 1 2 .  The relaxation factor in (6) is set to tl = 0.5 to stabilize the second-order solution 
in the presence of the strong shock. The Mach number and pressure contours are shown in 
Figures 8 and 9, while the Mach number distribution on the surface is compared in Figure 10 to 
the results of Pulliam and Barton" obtained on a (561 x 65)  C-grid and those of JamesonZ2 on 
a (320 x 64) 0-grid. Note that in spite of the finer grids, the results of Pulliam and Barton and 
those of Jameson show shocks captured across several grid points. Convergence of the solution is 
shown in Figure 11. The saw-tooth appearance of the convergence history is due to the four 



1. 70. 
Iteration 

Figure 6. Convergence history for supersonic flow over a 15" wedge 

30. 

Figure 7. Detail of the (200 x 32) 0-grid around a NACA0012 airfoil 
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artificial viscosity cycles. Solutions times are of the order of 33 s per iteration on a Silicon 
Graphics Challenge computer with eight 150 MHz R-4400 processors, achieving speeds of 
20 Mflops per processor. 

The fourth case is for transonic viscous flow over a NACAOO12 airfoil, at M ,  = 0.9, 
Re = 5000 and 0" angle of attack. Details of the (200 x 48) C-grid, with 120 elements on the 
surface, are shown in Figure 12. The solution was started by marching in Reynolds number from 
1000 to 5000 with uniform first-order dissipation and E~ = 0.005, E~ = 0. Figure 13 shows the 
convergence curve with machine accuracy reached in 10 Newton iterations. The fully converged 
first-order scheme was then used as input for the second-order schemes 1, 2 and 3. 

To illustrate the difference between first- and second-order accuracy of the finite element 
schemes, consider the following: the scale factor of the natural viscosity terms of (2b) is 1/Re while 
the scale factor of the artificial viscosity terms is E ~ .  The overall scale factor of the combined 
viscosities is l/Re' = (1/Re) + E~ = 00052 for this particular test case, yielding an effective 
Reynolds number, Re', of 192.3. The second-order-accurate scheme at this Reynolds number and 
M ,  = 0.9 produces results that the almost identical to those of the first-order scheme at 
Re = 5000, as can be seen by comparing the Mach number contours on the upper and lower 
halves of Figure 14. The uniform artificial viscosity of the first-order scheme has therefore 
effectively lowered the Reynolds number by a factor of 26! Note also that above Re = 200 the 
first-order artificial viscosity dominates over the natural viscosity, hence the value of c1  must be 
kept lower than the inverse of the Reynolds number. The only way to achieve this objective is to 

Figure 12. Detail of the (200 x 48) C-grid for laminar transonic viscous flow over a NACA0012 airfoil 
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Figure 17. Convergence histories of the three second-order schemes for transonic laminar viscous flow over a NACA0012 
airfoil at M = 0.9, Re = 5000 and a = 0" 

refine the grid progressively as the Reynolds number increases, with the solution cost quickly 
becoming prohibitive. 

Figure 15 shows the Mach number contours obtained for M ,  = 0.9 and Re = 5000 with 
Scheme 3. The artificial viscosity parameters were set at = 0, c2 = 0,001 throughout the 
solution domain. The relaxation factor in (6) is set to c1 = 0.9 to stabilize the second-order 
solution. The improvement in the results achieved with the second-order scheme is noticeable. 
The surface Cp distribution obtained with the first and all the second-order schemes is compared 
in Figure 16 to the results of the finite volume scheme of Hollanders and Ravala~on.*~ Note again 
the good agreement between the Cp distribution of the first-order scheme at Re = 5000 and the 
second-order scheme at Re = 192.3 Figure 17 is a comparison of the convergence rates of 
Schemes 1, 2 and 3 using the various methods to compute the balancing terms. Schemes 1 and 
2 with balancing terms evaluated via a consistent mass matrix (CMM) have the slowest 
convergence rates. Convergence is improved by switching to other methods of evaluating the 
second-order balancing terms. Scheme 3 has the best convergence rate for this transonic test case. 
Solution times were of the order of 136 s per iteration on a Silicon Graphics Challenge computer 
with four 150 MHz R-4400 processors. 

9. CONCLUSIONS 

Numerical solutions for transonic inviscid and viscous laminar flows, using a higher-order 
dissipation, have been presented. The scheme is based on a second-order artificial viscosity 
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constructed with simple Laplacians of the primitive variables {u, u, p } ,  balanced by additional 
terms obtained either from the derivatives of the primitive variables or the momentum equations 
or from a tensor identity. The governing equations are linearized with Newton’s method and 
integrated with a Galerkin finite element approach. The unknowns are solved for simultaneously, 
in a fully coupled manner, with an efficient parallel direct solver. The second-order accuracy of 
the scheme has been formally demonstrated through a simple test for which an exact solution 
exists. Work is underway to apply efficient iterative schemes for the solution of the coupled 
system for three-dimensional applications as in Reference 19. 
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